562 research outputs found

    Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model

    Full text link
    The cluster size dependence of superconductivity in the conventional two-dimensional Hubbard model, commonly believed to describe high-temperature superconductors, is systematically studied using the Dynamical Cluster Approximation and Quantum Monte Carlo simulations as cluster solver. Due to the non-locality of the d-wave superconducting order parameter, the results on small clusters show large size and geometry effects. In large enough clusters, the results are independent of the cluster size and display a finite temperature instability to d-wave superconductivity.Comment: 4 pages, 3 figures; updated with version published in PRL; added values of Tc obtained from fit

    Hidden zero-temperature bicritical point in the two-dimensional anisotropic Heisenberg model: Monte Carlo simulations and proper finite-size scaling

    Full text link
    By considering the appropriate finite-size effect, we explain the connection between Monte Carlo simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renormalization group calculation for the bicritical point in 2+ϵ2+\epsilon dimensions. We found that the long length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear σ\sigma model. Our Monte Carlo data and analysis confirm that the bicritical point in two dimensions is Heisenberg-like and occurs at T=0, therefore the uncertainty in the phase diagram of this model is removed.Comment: 10 pages, 11 figure

    Monte Carlo simulations of Rb2MnF4{\rm Rb_2MnF_4}, a classical Heisenberg antiferromagnet in two-dimensions with dipolar interaction

    Full text link
    We study the phase diagram of a quasi-two dimensional magnetic system Rb2MnF4{\rm Rb_2MnF_4} with Monte Carlo simulations of a classical Heisenberg spin Hamiltonian which includes the dipolar interactions between Mn2+{\rm Mn}^{2+} spins. Our simulations reveal an Ising-like antiferromagnetic phase at low magnetic fields and an XY phase at high magnetic fields. The boundary between Ising and XY phases is analyzed with a recently proposed finite size scaling technique and found to be consistent with a bicritical point at T=0. We discuss the computational techniques used to handle the weak dipolar interaction and the difference between our phase diagram and the experimental results.Comment: 13 pages 18 figure

    Consolidated fire testing – a framework for thermomechanical modelling

    Get PDF
    Consolidated testing facilitates the investigation of the global behavior of structures subjected to fire and therefore may become increasingly important in structural fire engineering. In order to develop a consolidated testing procedure that meets the requirements arising from structural fire engineering and considers thermal strains, thermal creep effects as well as strength and stiffness degradation, a consolidated testing benchmark problem is elaborated. The benchmark problem allows to perform coupled experimental and numerical tests that can be verified by pure physical testing. Furthermore, a framework for a consolidated test setup is developed, including a tangent stiffness update algorithm. Two preliminary tests at ambient temperature show the eligibility of the consolidated testing framework and are presented in this paper

    Induced four fold anisotropy and bias in compensated NiFe/FeMn double layers

    Full text link
    A vector spin model is used to show how frustrations within a multisublattice antiferromagnet such as FeMn can lead to four-fold magnetic anisotropies acting on an exchange coupled ferromagnetic film. Possibilities for the existence of exchange bias are examined and shown to exist for the case of weak chemical disorder at the interface in an otherwise perfect structure. A sensitive dependence on interlayer exchange is found for anisotropies acting on the ferromagnet through the exchange coupling, and we show that a wide range of anisotropies can appear even for a perfect crystalline structure with an ideally flat interface.Comment: 7 pages, 7 figure

    Combined density-functional and dynamical cluster quantum Monte Carlo calculations for three-band Hubbard models for hole-doped cuprate superconductors

    Full text link
    Using a combined local density functional theory (LDA-DFT) and quantum Monte Carlo (QMC) dynamic cluster approximation approach, the parameter dependence of the superconducting transition temperature Tc of several single-layer hole-doped cuprate superconductors with experimentally very different Tcmax is investigated. The parameters of two different three-band Hubbard models are obtained using the LDA and the downfolding Nth-order muffin-tin orbital technique with N=0 and 1 respectively. QMC calculations on 4-site clusters show that the d-wave transition temperature Tc depends sensitively on the parameters. While the N=1 MTO basis set which reproduces all three pdσpd\sigma bands leads to a d-wave transition, the N=0 set which merely reproduces the LDA Fermi surface and velocities does not

    Monte Carlo simulations of ordering in ferromagnetic-antiferromagnetic bilayers

    Full text link
    Monte Carlo simulations have been used to study phase transitions on coupled anisotropic ferro/antiferromagnetic (FM/AFM) films of classical Heisenberg spins. We consider films of different thicknesses, with fully compensated exchange across the FM/AFM interface. We find indications of a phase transition on each film, occuring at different temperatures. It appears that both transition temperatures depend on the film thickness.Comment: Revtex, 4 pages, 4 figure
    corecore